

Type 1 diabetes and Exercise

Rob Andrews – University of Exeter

Rob Andrews - conflict of interest

Investigator on

- Bariatric study -By-Band-sleeve study
- Lifestyle studies -Early ACTID, EXTOD, EXTOD education

Presentations

 Talk on education days sponsored by Novo-Nordisk, Lilly, MSD, Astra-Zeneca

Positions

- Chair of Clinical study group 3 prevention + treatment T2DM
- Member of Royal College Obesity Forum

What we will cover

- Benefits of exercise
- Barriers to exercise
- EXTOD 101
- Preparing for exercise
- Controlling glucose during exercise
- Controlling glucose post exercise
- Role of diet in exercise

What are the health benefits of exercise in T1D?

Chimen Diabetologia 2012

Duration of honeymoon in T1D patients who exercise

Matched for age, sex, BMI

Honeymoon was defined as IDAA1C ≤9 IDAA1C = HbA1C (%) + [4 x insulin dose (units/kg/day)] (Mortenson, et al 2009)

Chetan et al 2018

Activity of Patients with diabetes

Rhys Matson et al 2019

Barriers to exercise in new onset adult T1D

Table 3 Barriers to increasing	Table 3 Barriers to increasing exercise cited by participants		
External	External Barrier (number of people mentioning barrier)		
Medical	Hypoglycaemia (both actual and fear of) (9)		
	Lack of knowledge/confidence in managing diabetes (6)		
	Fatigue (4)		
	Advice from healthcare professionals to stop exercising (4)		
	Planning for diabetes (eg, checking blood glucose/preparing for hypoglycaemia) (4)		
	Other physical health problems (eg, injuries) (3)		
	Feeling overwhelmed by diagnosis. (1)		
Time, work and environmental	Work commitments (9)		
	Family and other time commitments (6)		
	Availability and location of facilities (4)		
	Cost (4)		
	Weather/season (3)		
	Lifestyle (2)		
Internal Social and personal	Lack of fitness (3)		
	Lack of motivation (2)		
	Lack of enjoyment in certain activities (2)		
	Laziness (1)		
	Previous negative experience of exercise (1)		
Psychological	Feeling uncomfortable exercising (eg, at a gym) (2)		
t al BM I Open 2018:8	Feeling scared of exercising on own (2)		
	Feeling daunted at prospect of starting (2)		

Diabetes specific barriers in adults with new-onset and established T1D

Т

New onset T1D		Established T1D	
•	Hypoglycaemia (both actual and fear of)	•	Loss of control of diabetes
•	Lack of knowledge/confidence in managing	•	Lack of knowledge on the
	diabetes		management of diabetes for
•	Advice from healthcare professionals to stop		exercise
	exercising		
•	Planning (e.g. checking blood glucose)		
٠	Feeling overwhelmed by diagnosis.		

Kennedy 2018, Lascar 2014

HCP confidence in giving advice

(162 responses. 44% Dieticians, 30% Drs, 25% nurses)

85% of HCPs reported they were very confident or confident at providing exercise education on all key topics

L Rich et al, Poster presentation at IDF 2015.

Knowledge levels of HCPs

Average scores for each domain (the number of questions in each domain)	Correct responses	
or questions in each domain,	n (N)	%
General knowledge (4)	151 (648)	23
Action depending on blood glucose (8)	839 (1296)	65
Adjustment of rapid acting insulin (6)	459 (972)	47
Adjustment to basal insulin (6)	334 (972)	34
Risk of hypoglycaemia (2)	42 (324)	13
Insulin injection sites (2)	207 (324)	64
Food and drink consumption (3)	334 (486)	69
Treatment of hypoglycaemia (1)	98 (162)	60

Knowledge levels were poor

89% of respondents wanted more formal education for managing T1D for

exercise. L Rich et al, Poster presentation at IDF 2015.

EXTOD 101

Aim was to set world record for most people with Type 1 diabetes to run a half marathon

Aims of study

• To record what happens with blood glucose in patients with T1D training for and competing in a half marathon

- To document what strategies they used to control glucose during training and during the race
- To see if all this could be done remotely

Methods

Glucose control

8 weeks before, day of race 2 weeks after

Settings LOW GLICOSE ALLOWINGE SETTING Milduin MEDIWI GOAL: 151 mpil. Logand 🔿 LOW 🗣 MCOENATE 🗣 HICH 🔹 MEAL 🎮 REOTRAE

Demographics

eristic	Characteristic	
/ears) 44 <u>+</u> 12	Age (years)	
(F:M) 21:16	Sex (F:M)	
MDI) 15:22	Treatment (Pumps: MDI)	
vears) 22 <u>+</u> 5	Diabetes Duration (years)	
BMI 23.2 <u>+</u> 4.7	BMI	
Lc (%) 7.3 <u>+</u> 0.6	HbA1c (%)	

Number of Hypos during exercise

60.0 Average hypos rate is 14% <u>+</u> 14

Number of Hypers during exercise

Summary 1 - training

• Hypo and Hyperglycaemia are common when running in people with T1D training for a half marathon

 27% of the time the patient will have a problem with one of these

Race day

Night before the race

Took extra carbohydrate	54% (19)
Reduced background insulin	11% (4)
Number who had hypo	14% (5)

No one needed help to manage

During the race

After the race – evening

Snack before bed	37% (13)
Reduced background insulin	34% (12)
Hypo over night	17% (6)

One person needed help with hypo

Conclusion

• Patients have a lot of problems with hypos and hyperglycaemia when training for and completing a half marathon.

• Research is needed as to how best to support them.

EXTOD education

EXTOD FACILITATOR CURRICULUM

Litchfield 2019 Narendran 2019

Considering exercise – three things to think about

The exercise

Time of day

Glucose level

The exercise – three things need to know

- Type of exercise
- Intensity of exercise
- Length of exercise

Three types of exercise

Flexibility

Anaerobic

Aerobic

Normal glucose responses to different exercises

Glucose responses to different exercises in T1D

Intensity of exercise

Length of exercise

Duration

Summary 1

• Type of exercise will effect direction glucose goes in

• Intensity of exercise will determine amount of glucose used

• Length of exercise will determine amount of glucose used

Time of day – three things to think about

• Prevailing Insulin concentration

• When last ate

• Am or PM

Prevailing insulin levels

Clock time, hours

Glucose response to exercise Fed vs fasted

Poor reproducibility in the blood glucose response to aerobic exercise in individuals with T1D in the post meal state

Good reproducibility in the blood glucose response to aerobic exercise in individuals with T1D in the fasted state

Biankin et al., Diabetes Care 2003

Liver glucose release and timing of fast acting insulin

Likelyhood of further hypoglycaemia following morning or afternoon exercise

Journal of Diabetes Science and Technology 2015, Vol. 9(3) 619–624
Summary 2

• Less risk of hypo if exercise when fasted

• Glucose response to exercise is more reliant if exercise fasted

 Higher risk of post exercise hypoglycaemia if exercise later in day

Glucose level- three things to think about

• Whether had any hypoglycaemic episodes

• Direction of travel of glucose

• Current blood glucose

Vicious Cycle of Hypoglycemia and Exercise

Ertl & Davis, Diabetes Met Res Rev, 2004

Direction of glucose

Although A and B have similar glucoses. Exercising at these point is likely to see different glucose response to exercise

A few glucoses before exercise will enable you to see direction of travel

Blood glucose that say's NO

Low blood glucose Less than 3.5	High blood glucose More than 15
Severe hypoglycaemia (needed help)	Ketones greater than 1.5 mmol/L
Don't exercise for 24 hours	 Take insulin and wait until have dropped to below 1.5 mmol/L before exercising
Self-treated hypoglycaemia	Ketones less than or equal to 1.5 mmol/L
Be careful for 24 hours	Eaten less than 2 hours ago: just monitor
 If it occurs before exercise – treat and have stable glucose for 60 minutes before starting If it occurs during exercise – stop, treat, recommence 	 Eaten more than 2 hours ago: take extra insulin Can do low-to-moderate intense exercise
after stable for 45 minutes	

Starting blood glucose

Blood glucose	Recommendations (rule of thumb)	
Less than 5.6 mmol/L	Ingest 20g of glucose before exercise Delay exercise until blood glucose >5.6mmol/L	
5.7 – 6.9 mmol/L	Ingest 15g of glucose Exercise can be started	
7 – 15 mmol/L	Exercise can be started	
More than 15 mmol/L	 Check blood ketones If ketones greater than 1.5 mmol/L take 1/3 (30%) of normal corrective dose of insulin and do not exercise until have dropped below 1.5 mmol/L If ketones less than or equal to 1.5 mmol/L take 1/3 (30%) normal corrective dose of insulin if not eaten in last 2 hours and start to exercise, keeping an eye on your blood glucose 	

Glucose range for best performance

Kelly D et al Int J Pediatr 2010

- Clinically people seem to have ideal range for getting best performance – varies for different sports.
- Hypo before events effects performance.
- People who have recurrent hypo seem to not see as much improvement as expect – this could be due to nutritional issues rather than hypo.

Simple flowchart for glucose and exercise

If know direction of glucose from >two blood glucose readings, flash monitor, or continuous glucose monitor.

If and glucose 5.7-6.9: no need for extra carbs, proceed to exercise. Stick to advice if in any other range.

If and glucose 5.7-6.9: take twice as much carbs at 20 and 40 minutes into exercise

If and glucose 7.0-9.0: take 15 grams of carbs at start of exercise

= I or 🔪

● = for

Summary 3

• Glucoses in the last 24 hours are important in determining if someone can exercise and how they should exercise

 Blood glucose just before starting to exercise can determine whether safe to exercise and whether action needs to be taken before exercise

Three ways to manage glucose during exercise - ICE

Insulin

Carbohydrate

Exercise

Using insulin to manage glucose during exercise

Affect of lowering fasting acting insulin by 50%

Simple strategy for insulin

If exercising within 2 hours of quick acting (bolus) insulin

• Reduce pre-exercise fast acting (bolus) insulin by 50%

This works for pumps as well.

Flowchart for simple Insulin Strategy pre exercise

Semi-quantitative method for fast acting insulin

Insulin reduction is made dependent on the intensity and type of the exercise that is going to be preformed. To gain the best advantages from this reduction, exercise is best-performed 30 minutes after eating. This works for people on pumps

	% Dose reduction		
Exercise	30 min of exercise	60 min of exercise	
Low intensity continuous	25	50	
Medium intensity continuous	50	75	
High intensity continuous	75	Not applicable	
Resistance; weight lifting	0	25-50%	
High intensity interval training	0		
Mixed : intermittent aerobic and	250/	50%	
anaerbic	2370		

Riddell MC 2017

Quantitative method for fast acting insulin

• For this you will need to know; how much energy will be burnt during exercise, and your insulin carbohydrate ratio. The energy burnt can be based on previous glucose need for that exercise or from one of the carbohydrate tables.

Example 1

Diane wants to cycle for one hour after breakfast at 14 miles/hr. she normally takes insulin in ratio 1 unit for 10 grams. For breakfast he has 95 grams of carbohydrate. On her ride he will burn 75 grams of carbohydrate (see table) above. So the Difference is 95-75 = 20 grams. So she needs to take insulin to cover 20 grams – 2 units, as opposed to his normal 9.5 units.

Lowering background insulin

Effect of pump disconnection on basal insulin levels

Effect of pump disconnection on basal insulin levels

Disconnection during a short exercise session has minimal effect on insulin levels

Effect of pump temp rate on basal insulin levels

Reduced bolus by 50% with no change to background if exercising with 2 hours of meal.

Reduce background by 50% from 60 minutes before until end of exercise if exercising 2 hours after eating

Semi-quantitative method basal insulin pump

Insulin reduction is made dependent on the intensity and type of the exercise that has been preformed. Reduction with exercise only if exercising 3 hours after meal.

	Exercise ~ 30 minutes	Exercise ~ 60 minutes
Aerobic	50% basal reduction, performed 90 min before exercise or 100% reduction at exercise onset	50%-80% basal reduction, performed 90 min before exercise or 100% reduction at exercise onset
Resistance (anaerobic)	No reduction	50% basal reduction, performed 90 min before exercise
High intensity interval training	No reduction	No reduction
Mixed (aerobic and anaerobic)	100% reduction at exercise onset	50% basal reduction, performed 90 min before exercise or 100% reduction at exercise onset 20-30% reduction

Using carbohydrate to manage glucose during exercise

Simple carbohydrate regime

• 30 grams/ hr

Examples of carbohydrates you could try

Carbohydrate source	10 grams	15 grams	30 grams
Jelly Babies (large)	2	3	6
Jelly Beans	6	9	18
Cola	100 ml	150ml (mini can)	300ml
Lucozade Body Fuel Energy	1/3 X 45g tube	½ X 45g tube	1 X 45g tube
Gel			
Apple Juice	80 ml	120ml	240ml
Lucozade Sport Body Fuel	167 ml	250ml	500ml
Powerade Isotonic	133 ml	200ml	400ml
Gatorade	167 ml	250ml	500ml

Take Carbohydrate every 20 minute

Time minutes

Simple Flowchart for Carbohydrate replacement during exercise

Semi-quantitative method

 In this an estimate of carbohydrate requirements based on body weight. For moderate activity 0.5g/kg/hr is used and for intense activity 1g/kg/hr is used.

• For example: Diane wishes to exercise at intense activity for 60 minutes. She weighs 56 kg so will take 20 grams at the start, 20 grams at 20 minutes and 16 grams at 40 minutes.

Quantitative method

 To account for the variable fuel requirements of different types of exercise, standardised tables have been devised to help athletes estimate ExCarbs for many different activities with varying intensities according to body weight.

• This activity-specific approach to estimating ExCarbs, although not tested in a clinical trial setting, is a popular resource among active patients with Type 1 Diabetes

Using EX carb table

 For example: Diane wishes to cycle for 1 hour at ~ 14 miles per hour. Using table below this requires 75 g, so will take 25 grams at the start, 25 grams at 20 minutes and 25 grams at 40 minutes.

Type of Activity	Speed/ intensity	Carb (grams) per kg per hour	Carbs (grams)for 75kg person per hour	Carbs for me WT=
Walking	3 miles/hr	0.33	25	
watking	5 miles/hr	0.67	50	
	5 miles/hr	1.0	75	
Running	8 miles/hr	2.1	158	
	10 miles/hr	2.8	210	
	6 miles/hr	0.45	34	
	10 miles/hr	0.78	59	
Cycling	14 miles/hr	1.34	101	75
	18 miles/hr	2.0	150	
	20 miles/hr	2.7	203	

Using exercise to manage glucose during exercise

Order of gym events

Order 2

Using intensity of exercise to control glucose

Continuous exercise + sprints

Three options for managing glucose during exercise - ICE

Summary of the three options

Strategy	Pros	Cons
Reducing pre-exercise fast acting insulin	Reduces hypoglycaemia during and following exercise, reduces carbohydrate requirement	Needs planning Not helpful for spontaneous exercise, or for exercise more than 2 hours after taking fast acting insulin
Exercise carbohydrate	Useful for unplanned exercise	May not be possible with some exercises Not helpful where weight control important May over-replace so blood glucose goes too high
Altering order or make of exercise	Useful for unplanned exercise	May not be possible with some exercises May not always have desired effect, lowering glucose or raising glucose more than wish

Three ways to manage glucose post exercise - ICE

Insulin

Carbohydrate

Exercise

Using insulin to manage glucose post exercise

Effect of exercise on Insulin sensitivity

Clock time, hours

Simple strategy for insulin post exercise

50 50 20 rule

- 50% reduction of normal bolus that would give with snack/meal – for first 2 meals/snacks post exercise
- 50% reduction of normal correction would give for 12 hrs
- 20% reduction of normal evening background or 20% reduction basal rate for 6 hrs from when go to bed if exercise
 >2hrs, new exercise or exercise after 4pm.

Simple flow sheet for changing insulin post exercise

Semi-quantitative method basal insulin MDI

• Insulin reduction is made dependent on the intensity and type of the exercise that has been preformed.

	Single exercise bout (up to 60 minutes)	Unusually active day (>90 minutes accumulated) or new exercise
Aerobic	No reduction	20-30% reduction
Resistance (anaerobic)	No reduction	10-20% reduction
High intensity interval training	No reduction	No reduction
Mixed (aerobic and anaerobic)	No reduction	20-30% reduction

This only applies to Long acting (glargine and determir) and intermediate acting insulin

Riddell MC 2017

Semi-quantitative method basal insulin pump

Insulin reduction is made dependent on the intensity and type of the exercise that has been preformed. Reduction with exercise only if exercising 3 hours after meal.

	Exercise ~ 30 minutes	Exercise ~ 60 minutes	After exercise
Aerobic	50% basal reduction, performed 90 min before exercise or 100% reduction at exercise onset	50%-80% basal reduction, performed 90 min before exercise or 100% reduction at exercise onset	20% basal reduction overnight from bedtime for 6 hours
Resistance (anaerobic)	No reduction	50% basal reduction, performed 90 min before exercise	20% basal reduction overnight from bedtime for 6 hours
High intensity interval training	No reduction	No reduction	No reduction
Mixed (aerobic and anaerobic)	100% reduction at exercise onset	50% basal reduction, performed 90 min before exercise or 100% reduction at exercise onset 20-30% reduction	20% basal reduction overnight from bedtime for 6 hours

Riddell MC 2017

Using carbohydrate to manage glucose post exercise

Three times need to give glucose

Type & Timing of carbohydrate

	Ż	The meal you eat before exercising should contain low GI (slow release) carbohydrate.
Before	During	After
Low GI	Medium/ High GI	Low GI

Type & Timing of carbohydrate

Type & Timing of carbohydrate

			
Before	During	After	The meal/snack you eat after exercising should contain low GI (slow release)
Low GI	Medium/ High GI	Low GI	carbohydrate and protein and should be eaten within 45 min of finishing exercise

Daily carbohydrate requirements

Training Load	CHO Recommendations
Very light training	3-5 g.kg-1.day-1
(low intensity exercise or skill-based exercise)	
Moderate intensity exercise for 1 hr/day	5-7 g.kg-1.day-1
Moderate to high intensity exercise for 1-3 hrs/day	6-10 g.kg-1.day-1
Moderate to high intensity exercise for 4-5 hrs/day	8-12 g.kg-1.day-1

Burke, L.M., (2010)

Daily protein requirements

Training type and load	Protein recommendations	Training type and load
Sedentary men & women	0.8 – 1.0g/kg/day	Sedentary men & women
Endurance athletes	0.8 – 1.2g/kg/day	Endurance athletes
Resistance (strength)	1.0 – 1.7g/kg/day	Resistance (strength)
athletes		athletes

Burke, L.M., (2010)

Recovery food

- Protein and Carbohydrate together improve glycogen storage 2 hours post exercise
- 4 carb : 1 protein
- 1g/kg/hr Carb (greater than 90 minutes 1.2 g/kg/hr)
- 0.2g/kg/hr Protein (up to 20 grams)

Type & Timing of fluid

	Ż	Start exercise well hydrated. Drink 200-300 mls water or sugar-free squash in the hour before exercise
Before	During	After
Low GI	Medium/ High GI	Low GI

Type & Timing of fluid

Type & Timing of Fluid

	Ż		
Before	During	After	Weigh before and after exercise. For every 0.5 kg lost drink 500 ml
Low GI	Medium/ High GI	Low GI	If do not know weight lose then 500 ml for every hour of sport

Preventing hypoglycaemia overnight – Bedtime snacks

If blood glucose <10 before bed then suggest have protein and carbohydrate snack (30 grams carb + 15 gram protein).

If blood glucose <7 before bed as well as a snack may need to make reduction in background insulin/basal rate of 10%.

Using exercise to manage glucose post exercise

Using exercise to lower glucose post exercise

Weightlifting, Tag Sprinting, Diving, Swimming, Gymnastics, Wrestling, Dodge ball, Volleyball, Ice hockey, Track cycling

> Basketball, Football, Tennis, Lacrosse Skating Skiing (slalom & downhill), Field hockey Rowing (middle distance) Running (middle distance)

> > In-line skating Cross country skiing Brisk Walking Jogging Cycling

Warm down

Hyperglycemia

ANAEROBIC Short duration High-intensity

Hypoglycemia

AEROBIC

Longer duration

Lower Intensity

extok

Effect of exercising 2 times per week on insulin levels required for glucose control

Effect of exercising everyday on insulin levels required for glucose control

Three options for managing glucose after exercise - ICE

"I have not failed. I've just found 10,000 ways that won't work" Thomas Edison (1847-1931)

Three options for managing glucose around exercise - ICE

.

Carbohydrate for exercise

20% reduction night time background insulin If exercise after 4 pm or longer than 2 hours

Insulin – how much on board

/ how do you alter it

Situation	General CHO Recommendations
Habitual diet	Light training 3-5 g/kg/d
	Mod exercise 5-7 g/kg/d
	High (1-3h/d) 6-10 g/kg/d
	Very high (>4-5h/d) 8-12 g/kg/d
Pre event meal eaten 1- 4 hours pre exercise	A minimum of 1- 4g/kg BW for exercise > 1 h duration Consider Low GI choices
During activity (> 1 hour)	30-60 g/h Up to 90 g/h
Ultra Endurance (>3 hours)	Consider High GI choices
Recovery	1 -1.2g/kg during the first hour

extod

Further information – www.EXTOD.org

Managing glucose level through exercise

Email - r.c.andrews@exeter.ac.uk

