



Managing T1D for Exercise

Rob Andrews – University of Exeter

Parth Narendran – University of Birmingham

Help Mark cycle LEJOG

The Challenge

Help Mark cycle from Lands End to John O'Groats

An unsupported ride with his friends

Mark is a 26 yr old man, diagnosed with TYPE 1 DIABETES at age 12

HbA1c 7.5%

He has no diabetes complications
He is on MDI insulin injections and tests regularly
He has good hypoglycaemia awareness
He is otherwise fit and healthy

Sun July 7th Land's End YH, 5, 90m Mon July 8th Perranporth, 41, 857m Tues July 9th Launceston, 53, 1200m Wed July 10th Exeter, 52, 1094m Thurs July 11th Churchill, Somerset, 90, 1350m Fri July 12th Coleford, 50, 916m Sat July 13th Shropshire, 85, 1440m Sun July 14th Warrington, 82, 900m Mon July 15th Lancs, 80, 773m Tues July 16th Ambleside, 28, 503m Wed July 17th Carlisle, 49, 997m Thurs July 18th Sanguhar, 82, 958m Fri July 19th Lochranza, 67, 840m Sat July 20th Oban, 66, 840m Sun July 21st Fort William, 45, 755m Mon July 22nd Dingwall, 83, 1421m Tues July 23rd Golspie, 46, 464m Wed July 24th John O'Groats, 68, 1095m

Pre - exercise

Guidelines on starting glucose values

During and after exercise

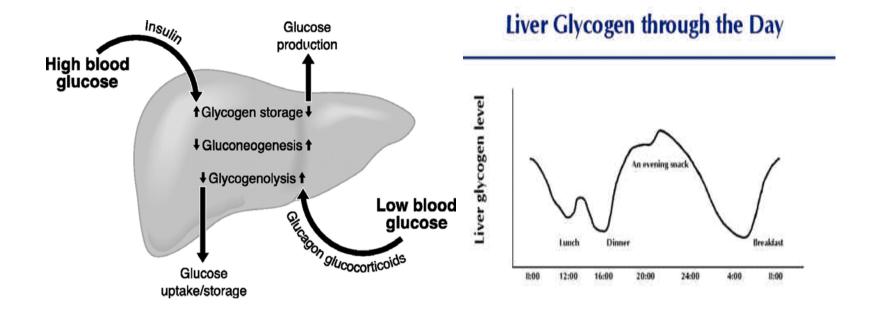
Alter insulin dose
Increase carbohydrate intake
Alter exercise type
(ICE)

Pre - exercise

Starting glucose values

Question 1

Adam, age 25, was diagnosed with T1DM 6 years ago. Adam used to exercise regularly and he would like to resume this.


He would like to cycle at moderate intensity for 60 minutes

What action should he take based on the following pre-exercise glucose readings?

5mmol/L (2mmol/L previous day needing 3rd party help)

Question 1 options

- a) Take carbohydrate, then retest glucose
- b) Take carbohydrate, then proceed to exercise
- c) Proceed straight to exercise
- d) Do not exercise

Liver is a major glucose store and is important in exercise

Low blood glucose depletes liver glycogen

It takes 24hrs for glycogen to be replaced to safe levels after a severe hypo

Question 1 options

- a) Take carbohydrate, then retest glucose
- b) Take carbohydrate, then proceed to exercise
- c) Proceed straight to exercise
- d) Do not exercise

Question 2

Adam, age 25, was diagnosed with T1DM 6 years ago. Adam used to exercise regularly and he would like to resume this.

He would like to cycle at moderate intensity for 60 minutes

What action should he take based on the following preexercise glucose readings?

15mmol/L (with 2+ ketones in urine)

Question 2 options

- a) Take correction dose insulin, then retest glucose
- b) Take a third of the standard insulin correction dose, then proceed to exercise
- c) Proceed straight to exercise
- d) Do not exercise

Insulin is required for glucose entry into muscle, therefore muscles will not exercise in the absence of insulin

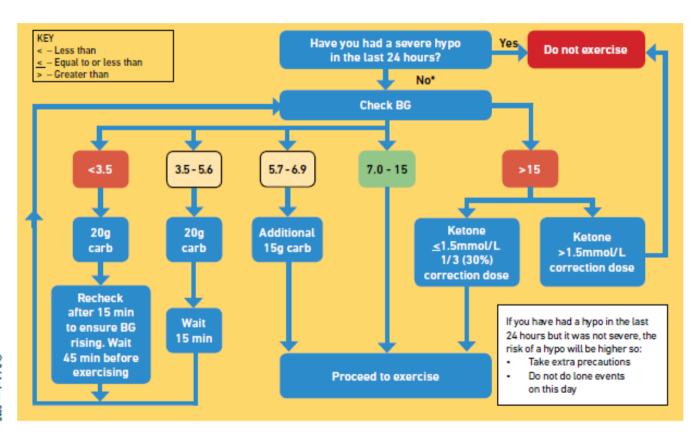
Question 2 options

- a) Take correction dose insulin, then retest glucose
- b) Take a third of the standard insulin correction dose, then proceed to exercise
- c) Proceed straight to exercise
- d) Do not exercise

Blood glucose levels that say "No"

Low blood glucose

- Blood glucose < 3.5 mmol/L
- Severe hypoglycaemia (needed help)
 - Don't exercise for 24 hours
- Self treated hypoglycaemia
 - Be careful for 24 hours
 - If it occurs before exercise treat and have stable glucose for 60 minutes before starting
 - If it occurs during exercise stop, treat,
 recommence after stable for 45 minutes


High blood glucose

- Blood glucose >15 mmol/L
- Ketone greater than 1.5 mmol/L
 - Take insulin wait until ketones have gone before exercise
- Ketones less than or equal to 1.5 mmol/L
 - Eaten <2 hours: just monitor</p>
 - Eaten >2 hours: take extra insulin
 - Can do low to moderate intensity exercise

If you cannot measure your blood ketones we suggest you take a 1/3 of your normal correction dose and then wait until your blood glucose is below 15 before exercising and ensure that you do not do anaerobic exercise on that day

Simple flowchart for glucose and exercise

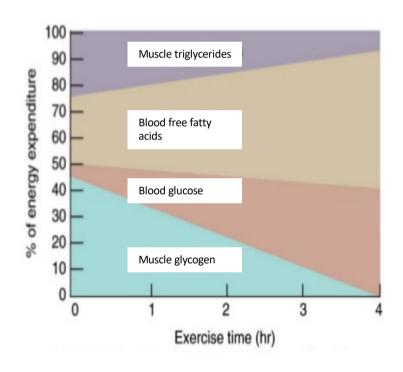
Addition information for CGM/Libre

Confirm with BG reading if

- Glucose <6.0
- Glucose >15

If and glucose 5.7-6.9: no need for extra carbs, proceed to exercise. Stick to advice if in any other range

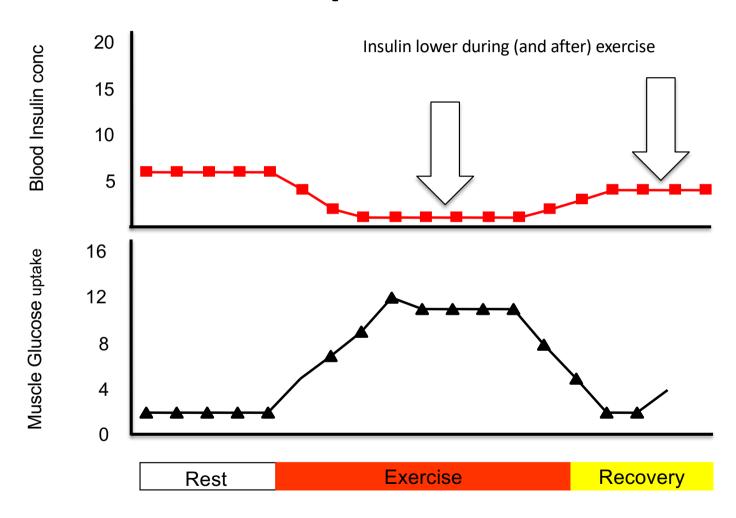
If and glucose 5.7-6.9: take twice as much carbs at 20 and 40 minutes into exercise

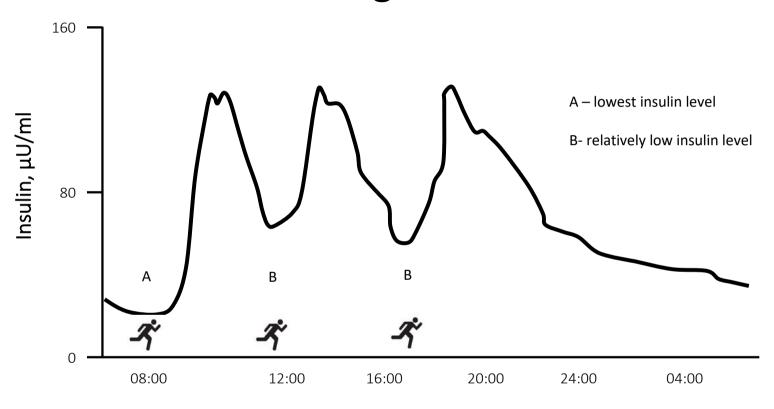

If and glucose 7.0-9.0: take 15 grams of carbs at start of exercise

During and after exercise

Potential approaches to controlling glucose

Alter insulin dose
Increase carbohydrate intake
Alter exercise type
(ICE)


Fuels used with increasing duration of exercise


Romijn *et al., Am J Physiol* 1993; Van Loon et al., J Physiol 2001

- Little blood glucose used during first 30mins of exercise
- More blood glucose used with longer duration exercise

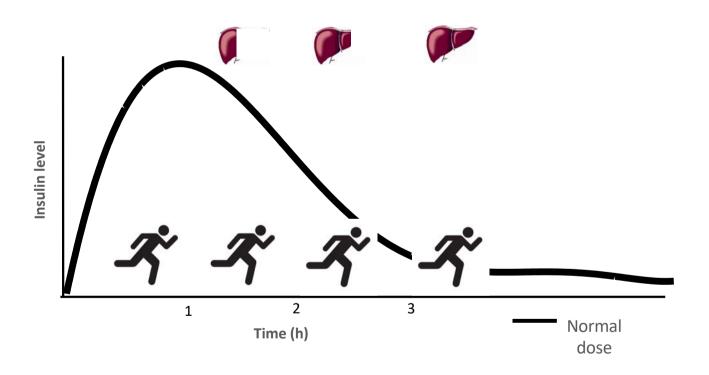
Normal response to exercise

Prevailing insulin levels

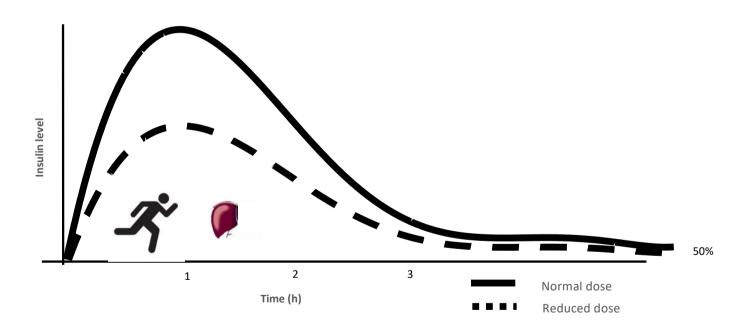
Clock time, hours

Morning or afternoon exercise?

Greater risk of hypo if exercise undertaken after 4pm



Insulin resistance
Wakefulness



Liver glucose release and timing of BOLUS insulin

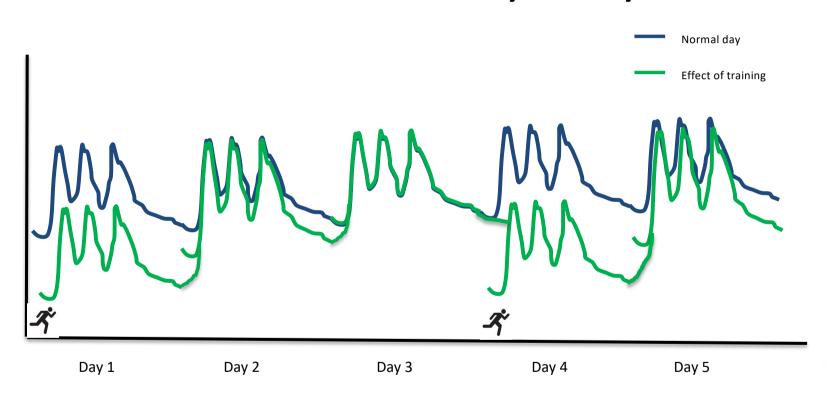
Effect of lowering fasting acting insulin by 50%

Simple Insulin regime

Exercise fasted

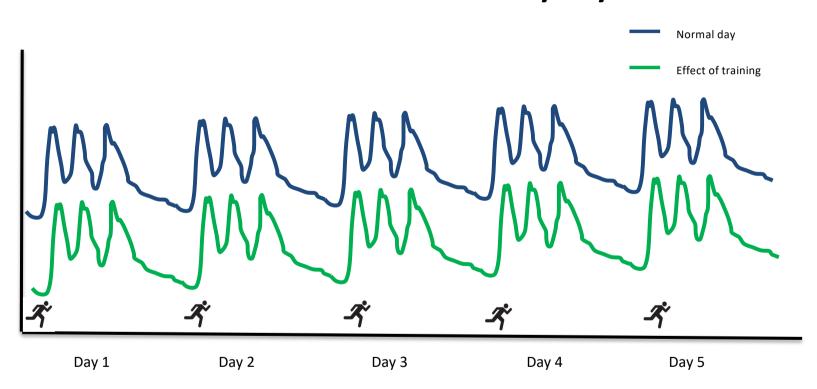
or

Reduce pre-exercise quick acting (QA) insulin by 50% if exercising within 2 hours of injection

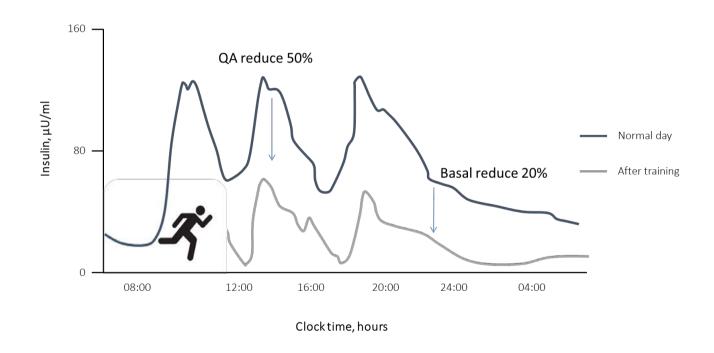

Or

Delay exercise till 2 hours have passed after meal

All this works for pumps as well



Effect of exercise on subsequent insulin sensitivity Exercise undertaken every few days



Effect of exercise on subsequent insulin sensitivity Exercise undertaken every day

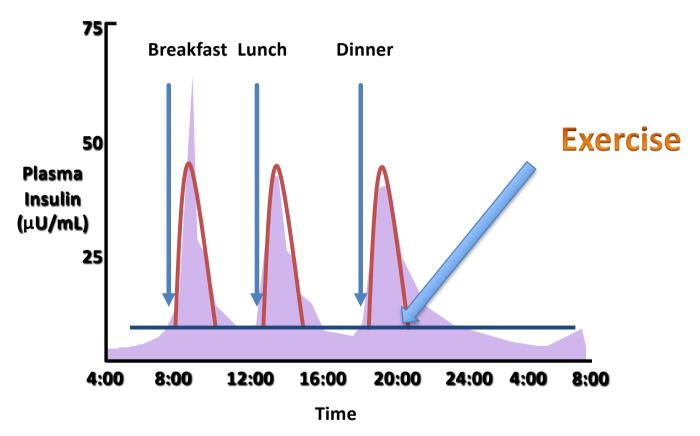
Effect of exercise on Insulin sensitivity

O/N basal reduction if 1) >2hrs exercise 2) after 4pm or 3) new exercise

Managing QA and BI insulin <u>AFTER</u> exercise

(The 50:50:20 rule)

- 50% (1/2) normal quick acting insulin dose for first two meals after exercise
- 50% (1/2) normal correction dose for 12 hours after exercise
- 80% (4/5) normal night time background insulin dose (or 20% reduction for 6 hours after go to bed) if
 - exercised after 4pm
 - more than 2 hours of exercise
 - new exercise



Question 3

Adam would like to cycle at moderate intensity for 60 minutes

He is on an MDI regime with meal time rapid acting insulin, and once a day basal insulin at night.

What should he do with his insulin if wants to cycle after dinner?

Adapted from White JR, Campbell RK, Hirsch I. Postgraduate Medicine. June 2003;113(6):30-36.

Question 3 options

- a) Reduce bolus insulin for dinner
- b) Reduce bolus insulin for dinner as well as evening basal insulin
- c) Reduce basal insulin in the evening
- d) No change

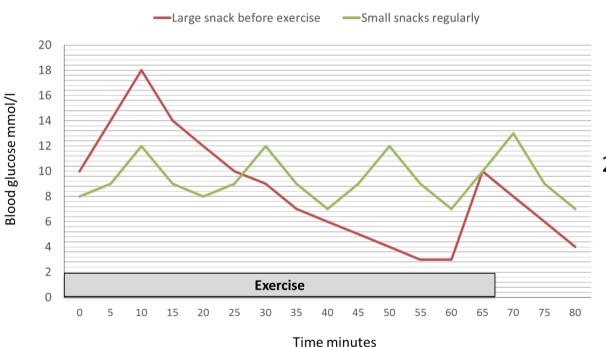
Question 3 options

- a) Reduce bolus insulin for dinner
- b) Reduce bolus insulin for dinner as well as evening basal insulin
- c) Reduce basal insulin in the evening
- d) No change

Managing QA and BI insulin <u>AFTER</u> exercise

(The 50:50:20 rule)

- 50% (1/2) normal quick acting insulin dose for first two meals after exercise
- 50% (1/2) normal correction dose for 12 hours after exercise
- 80% (4/5) normal night time background insulin dose (or 20% reduction for 6 hours after go to bed) if
 - exercised after 4pm
 - more than 2 hours of exercise
 - new exercise


...often exercise is not planned and insulin cannot be adjusted

Use of Carbohydrate

Use of Exercise

Simple carbohydrate regime

Start with 30g/hour

Taking something every
20 minutes will keep blood
glucose stable

Carbohydrate intake DURING exercise – further titration with CGM/Libre

CGM Glucose level	Trend arrow(s)	Action		Comments
<5.0 mmol/L	None or downward trending	15-20g CHO	8558	Stop exercise if blood glucose < 4.0 mmol/L
5.0-6.1 mmol/L	Libre	15g CHO	964	
5.0-6.1 mmol/L	Libre	20g CHO	0666	
6.1-6.9 mmol/L	or Libre	8g CHO	64	
>7.0 mmol/l		No action		

Semi-quantitative method

- Estimate of carbohydrate requirements based on body weight.
 - For moderate activity 0.5g/kg/hr
 - For intense activity 1g/kg/hr is used
 - Use the latter for starting advice

For example: Mark wishes to exercise at moderate intensity for 60 minutes. He weighs 42 kg so will take 7 grams at the start, 7 grams at 20 minutes and 7 grams at 40 minutes.

Effect of different exercises on blood glucose

Glucagon
Adrenaline
Noradrenaline
Cortisol

Blood glucose

Insulin

ENDURANCE

Hiking

Golf

Road cycling

Cycle tour

Mountain biking

Distance running

Distance

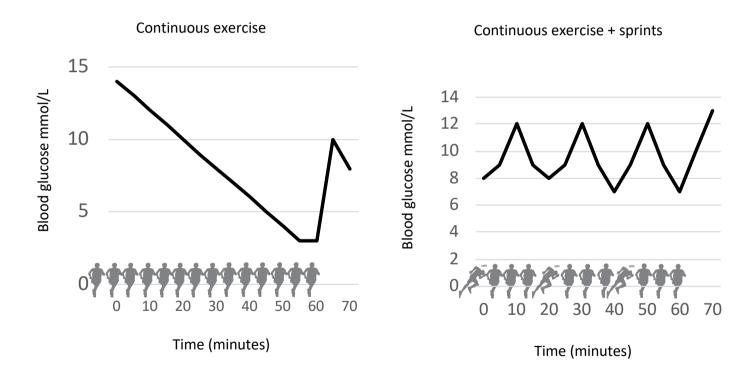
Marathon

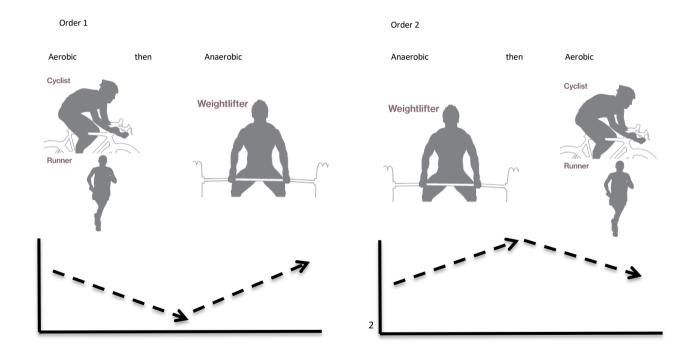
swimming

ANAEROBIC

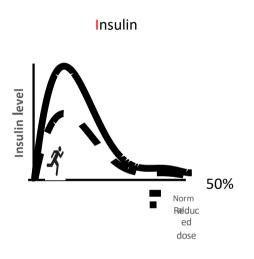
Weight lifting
Body Building
Dressage
Fencing
Track and field
events
Sprinting
Archery
Wrestling

INTERMITTENT

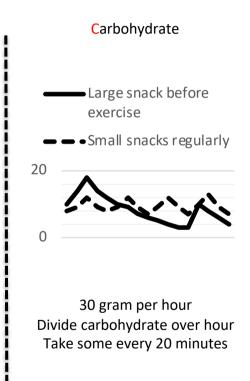

Childs play
Soccer
Team sports

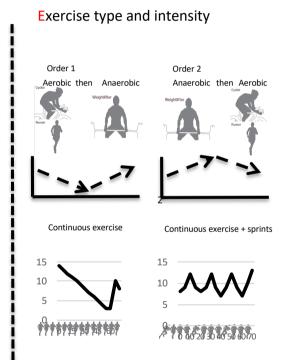


Using intensity of exercise to control glucose



...in the gym





Three options for managing glucose during exercise

Reduce quick acting by 50% if exercising within 2 hrs of meal

Question 4

24yr old student. Diagnosed T1D 10yrs.

Moderate glycaemic control. HbA1c 8%.

Basal bolus insulin regime.

Has recently taken up squash in evenings after dinner.

Troubled by hyperglycaemia following squash.

How would you manage him?

Question 4 options

- a) Take extra insulin with dinner before squash
- b) Take correction insulin after game
- c) Prolonged cool down after game
- d) Switch sports

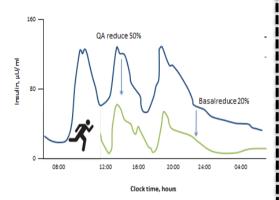
Managing QA and BI insulin <u>AFTER</u> exercise

(The 50:50:20 rule)

- 50% (1/2) normal quick acting insulin dose for first two meals after exercise
- 50% (1/2) normal correction dose for 12 hours after exercise
- 80% (4/5) normal night time background insulin dose (or 20% reduction for 6 hours after go to bed) if
 - exercised after 4pm
 - more than 2 hours of exercise
 - Blood sugar <126 before bed

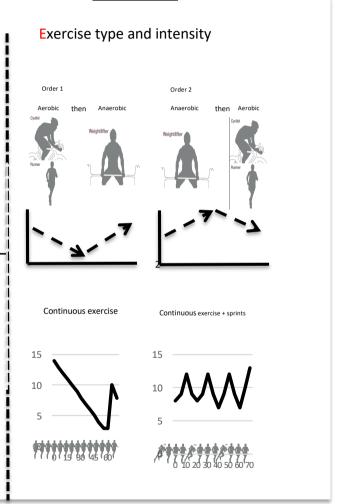
Diet Strategies for nocturnal hypoglycaemia

Consider bedtime snack with protein and complex carbohydrate if:


- exercised after 4 pm
- exercised more than 2 hours
- new exercise

Three options for managing glucose <u>after</u> exercise

Insulin – how much on board / how do you alter it


50% of normal quick acting with meal prior to exercise if exercising within 2 hours of meal

50% of normal quick acting insulin for first 2 meals/snacks after

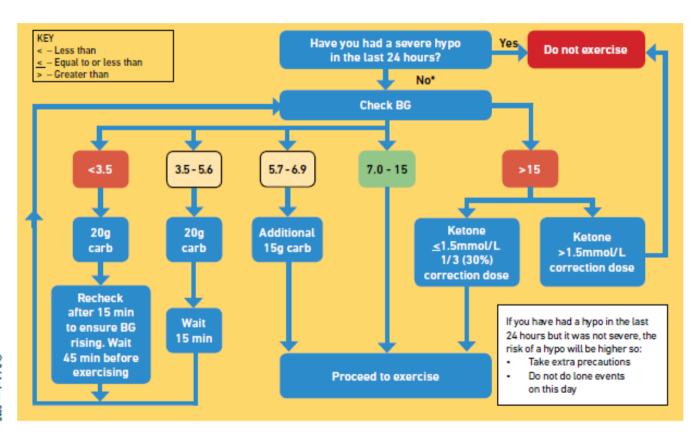
20% reduction night time background insulin If exercise after 4 pm or longer than 2 hours

Carbohydrate for exercise

Recovery	1 -1.2g/kg during the first hour
Before bed	Slow release carbohydrate

The Challenge!

Day 1 Mark arrives at Lands End and tells you he had a hypo yesterday that required help from his partner


What should he do?

What if Mark is about to start cycling

His BG is 6.0 mmol/L

What should he do?

Simple flowchart for glucose and exercise

Addition information for CGM/Libre

Confirm with BG reading if

- Glucose <6.0
- Glucose >15

If and glucose 5.7-6.9: no need for extra carbs, proceed to exercise. Stick to advice if in any other range

If and glucose 5.7-6.9: take twice as much carbs at 20 and 40 minutes into exercise

If and glucose 7.0-9.0: take 15 grams of carbs at start of exercise

Day 1 5 miles to Lands End Youth Hostel

Mark finishes safely

His BG is now 14 mmol/L

Why has his BG gone up from 6mmol/L?

Day 2 LE to Perranporth, 41 miles

Mark has breakfast a 7am Wishes to start cycling at 9am

Expects to get to
Perranporth at 5pm after
lunch stop

What bolus insulin doses? (RAI)

1) BF: 100%, Lunch: 50%, Dinner: 50%

2) BF: 50%, Lunch: 50%, Dinner: 50%

3) BF: 50%, Lunch: no insulin, Dinner: 50%

What bolus insulin doses? (RAI)

1) BF: 100%, Lunch: 50%, Dinner: 50%

2) BF: 50%, Lunch: 50%, Dinner: 50%

3) BF: 50%, Lunch: no insulin, Dinner: 50%

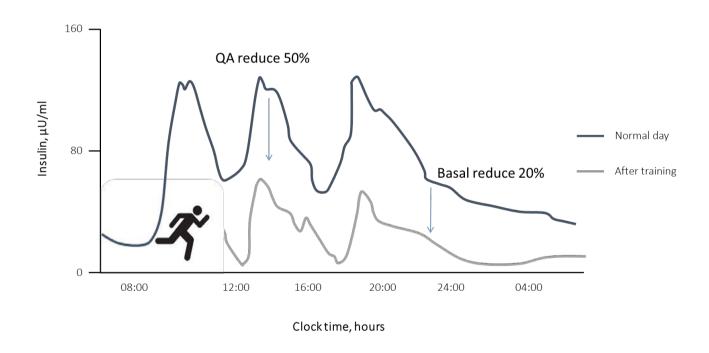
What basal insulin doses? (BD Levermir)

1) AM: 100%, PM 80%

2) AM: 50%, PM 80%

3) AM: 50%, PM 100%

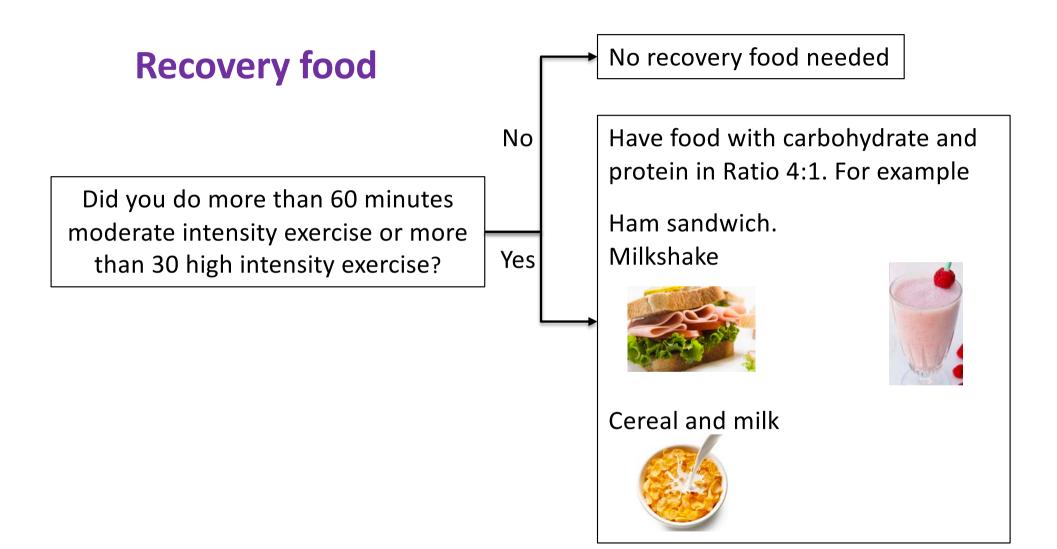
What basal insulin doses? (BD Levermir)


1) AM: 100%, PM 80%

2) AM: 50%, PM 80%

3) AM: 50%, PM 50%

Effect of exercise on Insulin sensitivity


Reduce basal O/N, and bolus for dinner and Bfast the next day

Managing QA and BI insulin <u>AFTER</u> exercise

(The 50:50:20 rule)

- 50% (1/2) normal quick acting insulin dose for first two meals after exercise
- 50% (1/2) normal correction dose for 12 hours after exercise
- 80% (4/5) normal night time background insulin dose (or 20% reduction for 6 hours after go to bed) if
 - exercised after 4pm
 - more than 2 hours of exercise
 - new exercise

Day 3
Perranporth to
Launceston, 53 miles

Mark has breakfast a 7am Wishes to start cycling at 9am

Expects to get to Launceston late afternoon after lunch stop

What should he do with insulin doses for today

1) Bolus: 50%, 50%, 50%. Basal 50%, 80%

2) Bolus: 100%, 50%, 50%. Basal 100%, 80%

3) Bolus: 100%, 50%, 50%. Basal 50%, 80%

What should he do with insulin doses for today

1) Bolus: 50%, 50%, 50%. Basal 50%, 80%

2) Bolus: 100%, 50%, 50%. Basal 100%, 80%

3) Bolus: 100%, 50%, 50%. Basal 50%, 80%

Day 6
Somerset to Coleford 50miles


Mark finds he is having hypos and needing to take significant extra carbs despite reducing insulin as suggested

What is happening?

Day 16 Fort William to Dingwall

Marks glucose has fallen from 7 to 5 in the past hour

He is 2 miles from his lunch stop

He is all out of food/snacks

What can he do?

What can he do?

Phone a friend

• Phone Uber

• Sprint

Wait for colleagues to catch up and help

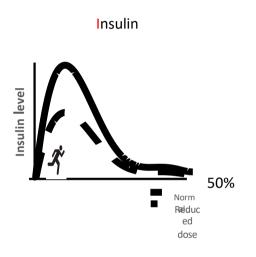
What can he do?

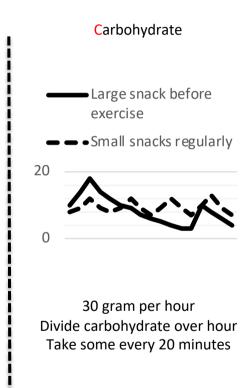
Phone a friend

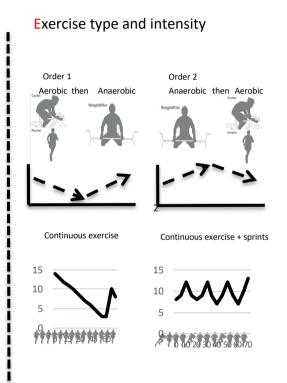
• Phone Uber

Sprint

Wait for colleagues to catch up and help


John O'Groats


Summary


- Severe hypoglycaemia in the past 24hours is an absolute contraindication to exercise
- Hyperglycaemia with ketones >1.5 is an absolute contraindication to exercise
- Hypoglycaemia can occur during and immediately after exercise, as well as in the night that follows
- Different exercises affect blood glucose in different ways
- People with T1D find simple starting rules helpful

Three options for managing glucose during exercise

Reduce quick acting by 50% if exercising within 2 hrs of meal

With advice and support people with T1D can (and want to) undertake physical activity safely and at the highest level

Support websites

www.extod.org

www.runsweet.com

www.excarbs.com

r.c.andrews@exeter.ac.uk p.narendran@bham.ac.uk